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ON THE STABILITY OF A SOLID ROTATING AROUND THE VERTICAL AND 
COLLIDING WITH A HORIZONTAL PLANE* 

Translated by J.J.D. 

A.P. MARKEEV 

The motion of a heavy solid with a convex surface above an absolutely 
smooth horizontal plane is considered. Collisions of the body with the 
plane during its motion are assumed to be absolutely elastic. The 
stability of such motion is investigated when the body rotates at constant 
angular velocity around the vertical , while its centre of mass moves 
between collisions on a parabola or along a fixed vertical line coinciding 
with the axis of rotation of the body. Stability conditions are obtained 
to a first approximation for arbitrary values of the parameters of the 
problem. Special cases of a non-rotating body with geometrical and dynamic 

symmetry, and of a body whose surface in the neighbourhood of the point 
of contact with the plane is close to spherical, are analyzed in detail, 
A peculiar "quantification" of stability and instability along the height 
of jumps of the body over the plane was found in the case of a rotating 
body. 

The problem of the stability of the motion of a solid with a convex surface of arbitrary 
form and an arbitrary inertia tensor when there is a non-retaining connection, has not so far 
been investigated. Investigations in the theory of vibrating-collision systems have dealt 
with either material points or homogeneous spheres, which in the case of a smooth plane is, 
from the point of view of dynamics, the same. 

1. Let a solid move in a gravitational field above a stationary horizontal plane. The 
surface of the body is assumed to be convex, and the plane is assumed to be absolutely smooth. 
During its motion the body may touch the plane at a point on its surface. Then, if a collis- 

ion occurs, it is assumed,to be absolutely elastic. 
Let Ozyz be a system of coordinates with origin at the point 0 of the horizontal plane. 

The Oz axis is directed vertically upward. We denote the coordinates of the centre of mass 

G by z,y,z r and attach to the body a system of coordinates GStlS whose axes are directed 
along its principal central axes of inertia. The orientation of the body relativetodbsolute 
space is defined by Euler's angles 8,cp,$1 which are conventionally introduced. We denote the 
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point of the body surface closest to the horizontal plane z =0 by M. It can be shown that 

the coordinates 5, r), ; of the point M in the system of coordinates GE@ are functions of S 

and 9, which are determined by the form of the equation that specifies the surface of the 
body. The unit vector 0s in the same system of coordinates has the components 

y1 = sin 6 sin 9. yz = sin 8 cos rp, ys = co9 6 (1.1) 

Let m be the mass of the body, g be the free fall acceleration, and A, B, and C the 
moments of inertia of the body about the axes G&Q and G6,respectively. The projections of 

the absolute angular velocity of the body on these axes are denoted by p.q,r. 

For the motion of the body between collisions, when it performs a free flight above the 

plane, the following equations hold: 

5” = 0, y” = 0, 2” = --g (1.2) 

Ap’ + (C - B) qr = 0, Bq’ + (A - C) i-p = 0, Cr’ + (B - (1.3) 

A)pq=O 
p = 9,‘~~ + 8’ cos cp, q = $‘y2 - 8’ sin cp, r = qJl'vr + cp' (1.4) 

To obtain the equations that define the motion of the body in time intervals which in- 
clude the instant of collision of the body and plane, Eqs.(l.Z) -_(1.4) must be supplemented 
by equations that follow from the general theory of frictionless collision /l/. Denoting as 
usual by the minus and plus signs the kinematic characteristics of the body motion before and 
after the collision, we have, respectively, 

s*+ E x.-, y*+ = I/*-, z'+=z'- + + I (1.5) 

(1.6) 

I= - + [z’- + P- (WI - Yd) + q- (Y15 - BE) + r- (YrE - Y1’111 

k= ml - l4.Y 
t+ A 

: (n5 -BvaE)* ; (Id - YlclY C 

where I is the collision momentum, and, since the quantities E,v), 6,y1.yI,ya do not change 
during the impact, they are not denoted by a minus and plus sign. 

2. Suppose that at the point of interseciton of the body surface with the c;rl axis for 
negative 7, the.plane tangent to the surface of the body is normal to @. The body can 
execute motion in which 

8 = n/2, cp = 0, p = 0, q = (I’ = 0 = const, r = 0 

5' = const, y' = const, z'+ = --z'- = v/ = const 

In this motion the axis (;11 is vertical, and the body rotates around it at constant 
angular velocity. As the result of collisions the body periodicallyjumpsover the plane, and 
the maximum distance of the lowest point M of its surface from the plane is N. The motion 
is periodic of period z = 2T/mg equal to the time interval between two consecutive collis- 
ions between the body and plane. Between collisions the centre of the body mass moves either 
on a parabola or along a given vertical line, depending on whether the constant quantity 

5.2 + g.2 is zero or non-zero. Below, without loss of generally, we will consider only the 

case when x'~ + y'* = 0. 
Let us investigate the stability of that motion relative to perturbations of the angles 

6, 99 the projections of the angular velocity p,q,r , and of the height of the jump H. Linear- 
ization of Eqs.(1.3)-(1.5) in the neighbourhood of this motion shows that to a first approx- 
imation the height of the jump H and the angular velocity $-of rotation of the body around 
the vertical line are constant. If we set e = n/2 + zl, cp = z,, p = x,), r = x4, then from (1.3) 
we obtain for variables x,(i= 1,2,3,4) a system of equations of the first approximation 

X 1’ = _-OX) + Xl), x,’ = ox1 + x, (2.1) 
B-C 

x3*=7 oz., x;=--_a.T~ 

that defines the perturbations of the motion of the body in the intervals between collisions. 
From (1.6) we obtain equations that connect the kinematic characteristics of the motion 

of the body before and after collision to a first approximation in z, 

xs+=x3- + T [(h--*)xl--Lzlr (2.2) 
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x4+ = x*- - F [lx, - (h - I,) x21- 

1, = rl sin* a + r, cosp a, l2 = rl cos* a + rz sin* a 

1 = (r2 - rl) sin a co9 a 

where H is the distance between the centre of mass of the body and the point M in unperturbed 
motion, r,,r, are the principal radii of curvature of the surface of the body at point M, and 
a is the angle between the axis Gc and the curvature line that corresponds to rl and is 
measured from the axis 66 counterclockwise, when viewed from the side of the positive semi- 
axis Gjl which in-unperturbed motion is vertical. 

3. The fundamental matrix X(t) of system (2.1) that satisfies the condition X(O)= E 
is 

cosot - sinot & (sin d + x sin Qt) -g (co9 wt - CDS hit) 

sin ot cosot - g- (co9 ot - cos rn) A( sinot + +sinS2t) 

x (t) = 
0 0 cospt g sin Qt 

0 0 - $sin 62t co9 61t 

%I_ CP--A) 
A@--C) ’ 

Q!4_ P-4P-CC) (g 
AC 

Let xT = (z,, z,, xa, 241, where T is the symbol of transposition. Taking into account that 
during the collision the quantities x1 and x, do not vary, we then rewrite (2.2) in the form 
x+ = Yx-, where 

1 0 0 0 

0 1 0 0 

y= p-Q -.yl 10 

mv -L’ 1 qqM1,) 0 1 

Denoting by xOthe value of the vector x before the first collision, its value xl prior 
to the second collision is calculated from the formula x1= Zx’, where Z = X (7) Y, and X (T) 
is the value of the matrix x (t) at the instant of time equal to the period of the motion 
considered here. Prior to the (k + I)-th collision xk = Zx” (k = O,i,2,...). 

For the stability of motion it is necessary that the characteristic equation of matrix 
Z should not have roots with moduli higher than unity. When there are no such roots, but 
roots with moduli equal to unity are present it is necessary in the Jordan form of matrix Z 
for the cells corresponding to these roots to be of the first order. 

As shown by calculations, in the problem considered here the characteristic equation will 
be reciprocal 

p'-a~&J*+a*~~-aalp+1=0 (3.1) 

n~=2(cosUYT+cosQr)+~ mgT [(h-ll,)(sincln++sinQr) + 

(h-lIl)(sinor+xsinhh)] 

a~=2+4coso~cosPr + L). ("')'[2(1_ co907 cosQr)+ 

(x+~)sinossinS2r]+2~[(h-_1,)(sin~cosPr+ 

~cosossin~T)+(h-_Ir)(sino~cosIlrfxcosorsia6Er)] 

The region of stability is defined by the system of inequalities /2/ 

-2 < a, < 6, 4 (aa - 2) < 412 < '/, (a, + 2)' (3.2) 

When therese inequalities are satisfied, the characteristic equation has only simple 
roots whose moduli are equal to unity. Outside the region defined by inequalities (3.2), 
Eq.( 3.1) has at least one root with modulus exceeding unity. 

4. The analysis of stability regions (3.21, depending on the parameters of the problem, 
is generally complicated. Hence we shall consider the most interesting special cases. Let 

0 =0, i.e. the body in unperturbed motion does not rotate around the axis Gq which per- 
forms its motion along a given vertical line. In that case for any physically possible re- 
lations between the moments of inertia A,B,C , the coefficients of Eq.(3.1) become 

a1 = x1 + 4, a,=%+x,+6 



xl=mgra ! h- 1, h - I? 
c +A , 

i 

It can be shown that, when the three special cases: 1) rl = r,, A = C, 2) a = 0, (h - 
r&/A = (h - F&/C, and 3) a = n/2, (h - 7,)/C = (h - r,)lA that conform to the boundary aI2 = 

4 6% - 2) of the stability region, are exluced, conditions (3.2) are equivalent to the follow- 
ing three inequalities: 

her,, h<r,, H<H, (4.1) 
H, = IA (I, -h) -I- C & -h) - (IA (1i -h) - C (4 - 

h)le + k~Cla)~~~l 14m (rl - h) (r, - h)l-’ 

Hence this motion is unstable, if the centre of mass in the unperturbed motion is higher 
than at least one of the centres of curvature of the surface of the body at point M, or the 

height of the jump H of the body over the plane exceeds the critical value H,. 
For example, let the body be a homogeneous ellipsoid whose surface is defined in the 

system of coordinates Ghqc by the equation $?/@+q'[ bP+I;nIes=L Then 

P h=b, Q=-, #al 
b 

Tsl-, 
b 

a = 0, 1 = $ (b’ + 8). C = .$ (a’ + b’) 

It follows from (4.1) that when o-0 the motion of the ellipsoid is stable, if the 
shortest of its semiaxes is directed along the vertical, and the height of the ellipsoid jump 
over the plane does not exceed M, = b(u*+ bt)/IiO(d- b’)] when a > c or H, = b (9 + b*)l[iO (P - b’)] 

when 0 < c. 
Note that when m,h, A,C, r,,r, are fixed, the critical height H,of the jump of the body 

is a function of the angle a. It is maximum when a = 0 of a= n/2, i.e. when the lines of 
curvature of the body at the point M are parallel to the axes of inertia Gc and GE which 
in the unperturbed motion of the body are horizontal. 

5. Let o# 0 and the body be dynamically and geometrically symmetric, i.e. A = C, 
r1 = r, = r. In that case the coefficients of the characteristic equation (3.1) are 

a, = 4&k,, ap = 4 (hIa + &*) - 2 

The stability conditions (3.2) reduce to the system of inequalities 

0(X,‘+ hz<2, (I- h,2) (1 - &,")> O, I*~l+l~a I 

which when \h,j# i and Ih,I#]h,I reduces 'co a single inequality 

f (7) < 0 (5.1) 

If inequality (5.1) is satisfied with a reverse sign, the motion is unstable. The re- 
gions of stability and instability are shown in Fig.1 in the plane of the parameters 

o = Bod(4A), 6 = 4Amg (r - h)l(Bo)a 

6 

f 

0 

-1 

Fig.1 equalities (5.1). 

Since the conditions of stability are independent or of the 
sign of 0,s is assumed to be a non-negative quantity. The solid 
lines in Fig.1 relate to the curves 6 = -tgo/s and the dashed 
lines to the curves & = ctgojo. Regions in which the inequality 
(5.1) is satisfied are shaded. 

Some peculiar quantization appears in regions of stability 
and instability at the height H of the jump of the body in 
unperturbed motion. A denumerable set of alternating intervals 
of stability and instability exist, which extend infinitely 
upward. No matter how large the height of jump of the body, 
the set of intervals of stability and instability indicated here 
necessarily exists at a considerable height. 

Let us consider in detail the results of an analysis of in- 

Let r>h, i-e in unperturbedmotion the centre of mass is 
below the centre of the spherical centre of the surface of the 

body at point M by which the body collides with the plane. 
defined by the inequalities 

q<H<+(g (n=l,Z,...) 

The instability regions are 

where T, are the roots of the equation f(r)=0 numbered in ascending order. As n increases, 
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the instability intervals become wider. When o increases the regions of instability contract 
and concentrate close to the heights 

HI, = gk*nzA2i(20*BP) (k = 1, 2, . . .) 

Note that when r> h for any 0, an instability interval exists along the height H, begin- 
ning at the plane of the jump. It is defined by the inequality 

O<H<H’zgr’ mg (r -h) T’ 
a 1 h 

=ctg (E&!) 

When o-0, we have H'- H,, where H,is the right side of the third of inequalities (4.1) 
calculated for A = C. 

Now suppose r<_h. If the inequality B*o"+4 Amg(r- h)> 0 (a condition that is similar to 
that of Maievskii's) is satisfied, a stability interval exists along the height which begins 
at the plane of the jump 

O<H< +(s)’ 

When the Maievskii-type condition is not satisfied, an interval of instability begins at 
the plane of jump. 

When r<h, the instability intervals are generally defined by the inequalities 

g(z$)*<H<T 

with n=l,2,..., if the Maievskii-type condition is satisfied, and n= o,i,2,,,. otherwise. 
At first sight the cause of the strange quatization of stability and instability intervals 

is that, when opo, the axis of symmetry of the body, in the perturbed state, performs 
oscillations between collisions, which results in alterations of the stability and instability 
region along the height of jump of the body over the plane. In Sect.4, where o = 0, the 
quantization of stability and instability intervals does not occur, since in the intervals 
between collisions, the motion of the body is not oscillatory. The perturbations.of X1,x2 
increase linearly with time, when o = 0 . 

6. Let the surface of the body near the point of its collision with the plane be close 
to the section of a sphere, and let the centre of mass be near the sphere centre. This means 
that the quantities h,r,, r, are close to each other. We assume that they differ by quantit- 
ies of order s. 

If e=O and B is the mean moment of inertia of the body, then for the coefficients of 
the characteristic equation (3.1) we have the following expressions: 

a, = 2 (cos 07 + ch S&T), a, = 2 + cos WT ch Q,z 

(,*=f(ypL) 

The condition of stability Ul*- '/&(a, + 2)‘<0 in (3.2) reduces to the inequality 

sin* 07 sV !&r< 0 which when sin or# 0 is satisfied with the opposite sign. Hence, if E is 
the mean moment of inertia and orf 0, fn, xlz2~... , then for fairly small e we have instabil- 
ity. 

If B is the largest or the smallest moment of inertia, then for e = 0 the coefficients 
of the characteristic equation (3.1) have the form 

s1 = 2 (co9 07 + cos Qz), a, = 2 + 4 co9 fm co9 Q7 

(Q=f AC 
(B--A)(~---C) o 

) 

and the stability conditions (3.21, when e = 0 , are in the form of a system of inequalities 

w+Q sinorsinQT#O, sinT7sin 2 U-n7#0, (6.i) 

The first and second of these inequalities are not satisfied in the following cases: 

I) OT =,N,JT, 2) Pz = N-p, 3) (o + 8) T = 2Ns-b (6.2) 

4) (o-Q)t=2N,n 

where IV, are integers. The last of inequalities (6.1) is not satisfied when the first two 
conditions of (6.2) are simultaneously satisfied. 

When at least one of Eqs.(6.2) is satisfied, there is resonance between the oscillations 
frequencies 0 and B of the body in its motion between collisions and the frequency 2x/7 of 
jumps of the body; in the unperturbed motion an integral relation exists between these oscil- 
lations. 

When there is no resonance, i.e. none of Eqs.(6.2) is satisfied, for fairly small ef0 
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the motion of the body is stable. If, however, thexe is resonance, then for small e#O 
instability is possible. We shall consider only non-multiple resonances, assuming that when 
e = 0 only one of Zqs.(6.2) is satisfied. 

Calculations based on the stability conditions (3.2) show that in resonance cases l), 2), 
and 3) when efo instability to a first approximation with respect to e apears only if the 
centre of mass of the body lies between the centres of curvature of the surface of the body 
at point M. More exactly, in cases 1) , 2), and 3) with e#O suppose we have, respectively 

07 = N,n + p, Ch = N,x -I- I”, (Q + 0) -c = 2Nsx + P 

Instability regions in cases 1) and 2) are defined by the inequality 

IPI< $g-m-rdb--h) - (6.3) 

and in case 3) by the inequality 

IPI<$$ f(h-rr,)(ra-h) IX”‘-%+1 (6.4) 

In the resonance case 4) instability to a first approximation with respect to e appears, 
if in the unperturbed motion the centre of mass of the body lieseitberaboveorbelowbothcentres 
of curvature. Ifwe assume (o - 8)'~ = 2N.n + p, the respective instability regions are defined 
by the inequality 

1 p I< E J.qh - 21) (h-r*) (%Q + x-9 (6.5) 

The quantity r in (6.3)-(6.5) is equal to its value in the corresponding resonance formula 
of (6.2). When efo the existence of resonances has resulted in the quantization of instab- 
ility regions along the height of the jump of the body over the plane. 
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